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Dust- dominated self-gravitating systems	



The collapse of self-gravitational collisionless systems 	


can be dealt with the introduction of coupled collisionless 
Boltzmann and Poisson equations	



J. Binney and S. Tremaine, Galactic Dynamics (Princeton University Press, Princeton, NJ, 1994).	



three-
dimensional 
vectors in the 
spatial manifold	



A self-gravitating system at equilibrium is described by a time-independent 
distribution function f0 (x, v) and a  potential  Φ0 (x) that are solutions of above 
equations	





Dust- dominated self-gravitating systems	



Considering a small perturbation to this equilibrium:	



by substituting in Boltzmann and Poisson equations  and by	


linearizing, one obtains:	



where  ε<< 1 and	





Dust- dominated self-gravitating systems	



Since the equilibrium state is assumed to be homogeneous	


and time-independent, one can set f0 (x,v,t ) = f(v), and the 
so-called Jeans “swindle” to set Φ0 = 0 	



In Fourier components	



By combining these equations, we obtain the dispersion relation	





Dust- dominated self-gravitating systems	



In the case of stellar systems, by assuming a Maxwellian 
distribution function for f0 we have	



By setting ω = 0, the limit for instability is obtained:	



by which it is possible to define the Jeans mass (MJ) as the mass originally contained 
within a sphere of diameter λJ:	



where	

 is the Jeans length	



….and then we can write	





Dust- dominated self-gravitating systems	



In order to evaluate the integral in the dispersion relation, we 
have to study the singularity at ω = k vx. To this end, it is 
useful to write the dispersion relation as	



defining	



Where                     and 	



We set also                     and                              because we are interested 
in the unstable  modes 	



These modes appear when the imaginary part of ω is greater than zero and in this 
case the integral in the dispersion relation can be resolved just with previous	


prescriptions.	





Dust- dominated self-gravitating systems	



In order to study unstable models we replace the 
following identities	



into the dispersion relation obtaining:	



This is the standard dispersion relation describing the criterion to collapse 
for infinite homogeneous fluid and stellar systems	





The Newtonian limit of  f(R) - gravity	



Field equations in f(R)-gravity give rise to the modified	


Poisson equations.  We know that	



Also we well konwn that 	



S. Capozziello, M. De Laurentis Phys. Rep. 509, 167-321 (2011)	



…and then the field equations assume this form	



  Ψ is the further gravitational potential related to the	


metric component g (2)ii 	



S. Capozziello, M. De Laurentis Ann. Phys. 524, 545 (2012)	
  



Jeans criterion for gravitational instability in f(R)-gravity	



Let us assume the standard collisionless Boltzmann equation:	



where, according to the Newtonian theory, only the potentia Φ is 
present	



Considering the f(R) Poisson equations, also the potential  Ψ 
has to be considered so we obtain the coupled equations	



we have replaced f’’(0) with the greek letter α	





Jeans criterion for gravitational instability in f(R)-gravity	



As in standard case, we consider small perturbation to 
the equilibrium and linearize the equations and in 
Fourier space so they became	





Jeans criterion for gravitational instability in f(R)-gravity	



Combining the above equations we obtain a relation between Φ1  
and Ψ1	



And then the dispersion relation is	



	
  As in standard case,  one can write	



By eliminating the higher-order terms (imposing  α = 0),	


we obtain again the standard dispersion	





Jeans criterion for gravitational instability in f(R)-gravity	



In order to compute the integral in the dispersion relation , we	


consider the same approach used in the classical case, and	


finally we obtain:	



Where                       and 	



To compare the modified and calssical dispersion relation we to 	


normalize the equation to the classical Jeans length by fixing	


the parameter of f(R)- gravity, that is	



This parameterization is correct because the dimension  (an inverse of 
squared length) allows us to parametrize as in standard case	





Jeans criterion for gravitational instability in f(R)-gravity	



Finally we write and plot this relation	



The bold line 
indicates the plot 
of the modified 
dispersion	


relation.	


The thin line 
indicates the plot 
of the standard 
dispersion	


equation	





The Jeans mass limit 	


 in   f(R)-gravity	



A numerical estimation of the f(R) instability length in terms of the standard 
Newtonian one can be achieved	



By solving numerically the above equation with the condition ω = 0, we obtain that the 
collapse occurs for	



However we can estimate also analytically the limit for the instability	


In order to evaluate the Jeans mass limit in f(R)- gravity, we set ω = 0	



 The additional condition α < 0 discriminates the class of viable f(R) models: in such a case 
we obtain stable cosmological solution and positively defined massive states	





The Jeans mass limit 	


 in   f(R)-gravity	



This  α<0 condition selects the physically viable models allowing to solve the above 
equation for real values of k. 	


In particular, the above numerical solution can be recast as	



The relation to the Newtonian value of the Jeans instability is	



Now, we can define the new Jeans mass as	



which is proportional to the standard Newtonian value	



We will confront this specific solutions with some observed structures.	





The MJ – T relation	



One can deal with the star formation problem in two ways:	



we can take into account the formation of individual stars and	



we can discuss the formation of the whole star system starting from 
interstellar clouds	



To answer these problems it is very important to study then 	


      interstellar medium (ISM) and its properties	



The ISM physical conditions in the galaxies change in a very wide	


range, from hot X-ray emitting plasma to cold molecular gas, so it is very 
complicated to classify the ISM by its properties	





The MJ – T relation	



However, we can distinguish, in the first approximation, between	



Diffuse hydrogen clouds. The most powerful tool to	


measure the properties of these clouds is the 21 cm	


line emission of HI. They are cold clouds so the	


temperature is in the range 10 ÷ 50 K, and their	


extension is up to 50 ÷ 100 kpc from galactic center	



Diffuse molecular clouds are generally self-gravitating,	


magnetized, turbulent fluids systems, observed in sub-mm. 
The most of the molecular gas is H2, and the rest is CO. 
Here, the conditions are very similar to the HI clouds but 
in this case, the cloud can be more massive. They have, 
typically, masses in the range 3 ÷ 100 M¤, temperature in 
15 ÷ 50 K and particle density in (5 ÷ 50)×	

108 m-3.	





The MJ – T relation	



Giant molecular clouds are very large complexes of particles (dust and gas), 
in which the range of the masses is typically 105 ÷ 106M¤ but they are very 
cold. 	


The temperature is ≈15 K, and the number of particles is (1 ÷ 3)× 108 m-3 . 
However, there exist also small molecular clouds with masses M< 104 M¤ .  
They are the best sites for star formation, despite the mechanism of 
formation does not recover the star formation rate that would be 250M¤ yr-1 	





The MJ – T relation	



Bok globules are dark clouds of dense 
cosmic dust and gas in which star 
formation sometimes takes place. Bok 
globules are found within H II regions, 
and typically have a mass of about 2 to 
50 M¤ contained within a region of 
about a light year.	



HII regions. They are ISM regions with temperatures in the range 103 ÷  
104 K, emitting primarily in the radio and IR regions. At low frequencies, 
observations are associated to free-free electron transition (thermal 
Bremsstrahlung). Their densities range from over a million particles per cm3	



in the ultracompact H II regions to only a few particles per cm3 in the 
largest and most extended regions. This implies total masses between 102 
and 105 M¤	





The MJ – T relation	



Using very general conditions, we want to show the difference in the Jeans mass 
value between standard and f(R)- gravity.	



Let us take into account	



     in which ρ0 is the ISM density and σ is the velocity dispersion of particles due 
to the temperature	


These two quantities are defined as                               and 	



where nH is the number of particles measured in m-3,  is the mean molecular 
weight, kB is the Boltzmann constant and mH is the proton mass	



By using these relations, we are able to compute the Jeans mass for interstellar 
clouds and to plot its behavior against the temperature	





The MJ – T relation	



Any astrophysical system reported in Table  is associated to a particular	


(MJ – T)-region.	



Differences between the two theories for any self-gravitating system 	


are clear	
  



The MJ – T relation	



Dashed-line indicates the Newtonian Jeans mass behavior with respect to 
the temperature.	


Continue-line indicates the same for f(R)-gravity Jeans mass.	





The MJ – T relation	



By referring to the catalog of 
molecular clouds in Roman-
Duval et al., Astrophys. J. 
723, 492 (2010), we have	


calculated the Jeans mass in 
the Newtonian and f(R) 
cases.	



In all cases we note a 
substantial	


difference between the 
classical and f.R) value.	





Discussion and Conclusions	



Here we have analyzed the Jeans instability mechanism, adopted for star 
formation, considering the Newtonian approximation of f(R) gravity	



The related Boltzmann-Vlasov system leads to modified Poisson equations 
depending on the f(R) model	



In particular,  it is possible to get a new dispersion relation where 
instability criterion results modified	



The leading parameter is  α, i.e. the second derivative of the specific f(R) 
model. Standard Newtonian Jeans instability is immediately recovered 
for  α=0 corresponding to the Hilbert-Einstein Lagrangian of GR.	



A new condition for the gravitational instability is derived, showing 
unstable modes with faster growth rates.	





Discussion and Conclusions	


Finally we can observe the instability decrease in f(R)- gravity: such 
decrease is related to a larger Jeans length and then to a lower Jeans mass	


We have also compared the behavior with the temperature of the Jeans	


mass for various types of interstellar molecular clouds	


In our model the limit (in unit of mass) to start the collapse of an 
interstellar cloud is lower than the classical one advantaging the structure 
formation.	


Real solutions for the Jean mass can be achieved only for α < 0 and 
this result is in agreement with cosmology	


In particular, the condition α<0 is essentials to have a well formulated	


and well-posed Cauchy problem in f(R)- gravity	


Finally, it is worth noticing that the Newtonian value is an upper limit 
for the Jean mass coinciding with f(R.) = R	





Discussion and Conclusions	


It is important to stress that we fully recover the standard collapse 
mechanisms but we could also describe proto-stellar systems that escape 
the standard collapse model	



On the other hand, this is the first step to study star formation in alternative 
theories of gravity	





Next Steps	


From an observational point of view, reliable constraints can be achieved 
from a careful analysis of the proto-stellar phase taking into account 
magnetic fields, turbulence and collisions	



Addressing stellar systems by this approach could be an extremely important 
to test observationally f(R) gravity	



Moreover, the approach developed in this work admits direct generalizations 
for other modified gravities, like nonlocal gravity, modified Gauss-Bonnet 
theory, string inspired gravity, etc.	



Developing further this approach gives, in general, the possibility to 
confront the observable dynamics of astrophysical objects (like stars) with 
predictions of alternative gravities.	




