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Dust- dominated se (f-gmvitating systems

The co(cf?pse of se(f- ravitational collisionless systems
can be dealt with the introduction of cou]o[ec[ collisionless
Boltzmann and Poisson ecluom’ons
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A seﬁ-gmvimu’ng system at equifiﬁrium is described by a u’me-inofe}aencfent’
distribution ﬁmcu’on ﬁ, (x,v) and a Jaownu’a[ D, (x) that are solutions of above-
equau’ons

. CBinney and S. Tremaine, ga(acn’c @ynamics (Trince‘ron ’Universily ‘Press, Princeton, ﬂ\[ﬂ, 1 994).



Dust- dominated se (f-gmvita’cing systems

Consicfem’ng a small Joerturﬁau’on to this equi[iﬁrium:

f(F,v,t) = fo(r,v) + €f (7, v, 1),

O(7, 1) = Py(7) + €eP,(7, 1),
* ‘Where € << 1and

Ey suﬁstituu’ng in Boltzmann and Poisson ecluau’ons and 6y
(inearizing, one obtains:
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Dust- dominated se (f-gmvitating systems

Since the equiﬁ’ﬁrium state is assumed to be homogeneous
and u’me-imfeyencfent, one can set fo (xvt) = f(vf and the
so-called Jeans “swindle” to set ®, = 0

In Fourier components > Jfo
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— kz(I)l N 477fo1dl_))

ng comﬁining these equations, we obtain the d'i.gpersion relation
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Dust- dominated se (f-gmvita’cing systems

In the case cf stellar s stems, 6({‘/ assuming a Maxwellian
distribution ﬁmcu’on Jyor f; we have

_ Po = 2 /20?)
f() o (277_0_2)(3/2) € i
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P dv, = 0.
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ﬁy setting w = o, the limit for instability is obtained: k*(w = 0) = 47TG7'00 = k2,

72
Ey which it is }9055116[6 to cfeﬁne the Jeans mass (‘Mg) as the mass om’gina[@ contained.
Within a syﬁe're of diameter Ay . Ao (1 )3
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* Where A7 = = is the Jeans length
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Dust- dominated se (f-gmvitating systems

In order to evaluate the inwgm[ in the afisyersion relation, we-
have to stuo{y the singufarﬁy at W = kv, To this end, it is
fuseﬁM to write the cfisyersion relation as

_ .2')
xe X°/2

1 /2)
c{éﬁning W(B) = \/2_7;f Py dx,
* Where ,3 : k% and X = =

* We setalso @ = iw; and Re[W(%)] = 0 because we are interested.
in the unstable modes

g |

These modes appear when the imaginary part of W is [greawr than zero and in this
case the inwgm[ in the cfi.gpersion relation can be resolved just with Jorew’ous
‘jorescr?pu’ons.



Dust- dominated se (f-gmvita’cing systems

In order to stuofy unstable models we rejoface the-
fo[fowing identities

[F 2 e =1 Lmpes 1 ety
X = =~/ — =—mBe — erf B],
0o x>+ 37 2 2
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erfB(z) = —= [ e "dt

T JO

into the cfiﬁoersz’on relation oﬁmining:

k2:k2{1 T <w1/ﬁk0[1— f( - )]}
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This is the standard cfispersion relation cfescriﬁing the criterion to coffa}oseJ
for inﬁniw ﬁomogeneous ﬂuicf and stellar systems




The Newtonian [imit of f(R) - gravity

Field equations in f(ﬁ)- ravity give rise to the mocfiﬁecf

Poisson ecluau’ons. We know that

2) o 172 ..(2) 172 ..(2)
R()_Evgoo Ev 8ii

Also we well konwn that R?) ~ V2(q) — )

* Y is the ﬁu’tﬁer gmvitau’ona[ Joownn’af related to the

metric component g (2)“,

...and then the ﬁefc[ equau’ons assume this form
Vb + V2 — 2f”(O)V4(I) + 2f”(O)V4\I’ =2Xp

V2D — V2 + 3£7(0)V4D — 3F7(0)V4W = — Xp.

S. Capozziello, M. De Laurentis Phys. Rep. 509, 167-321 (2011)

S. Capozziello, M. De Laurentis Ann. Phys. 524, 545 (2012)



Jeans criterion for gravitational instability in f(R)-gravity

L@f us assume tﬁe smnc{amf CO[HSiOTL[@SS BO[I'ZTYLCWWL equau’on:

af(’(; VD (3G D) — (VB -V )G D, 1) =0,
!

Where, according to the Newtonian theory, only the potentia ® is
“present

Consic[e'ring the f(R) Poisson equations, also the }ooumu’a[ A 4
has to be considered so we obtain the coujo[ecf ecluations

V2(Pb + W) — 2aVHD — W) = 167G [f(?, ok

V2(P — W) + 3aVHD — W) — —87G [f(?, 5 1)dv

* We have rqpfacecf f”(o) with the greeﬁ [etter o




Jeans criterion for gravitational instability in f(R)-gravity

As in standard case, we consider small yerturﬁau’on to
the equiﬁ’ﬁrmm and [inearize the eclua,tions and in

JFourier space so tﬁey became

. L > > 0
—iwf, + 5 GRfy) — (FD,) - a’;“ 0

(D, + W) — 20k (D, — W) = 1677G/f1d17,
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Jeans criterion for gravitational instability in f(R)-gravity

Comﬁining the above equations we obtain a relation between ®,
and V¥,
3 - dark?

=
1 1 — 4ak?

D,

And then the d'i.fpersion relation is

1 — 4ok’ k-2
| — 476G —— 2[( - )dﬁ=0.
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As in standard case, one can write

1

N 2V27Gpy 1 —4ak? I:j‘kvxe_(“-%/zaz)dvx:l _0

o’ 3ak? — k2 kv, — w

fy eﬁminaﬁng the ﬁigﬁer-ord'er terms (imjoosing X =0),
We obtain again the standard di’gpersion




Jeans criterion for gravitational instability in f(R)-gravity

In order to compute the integm[ in the c{i;persion relation , we
consider the same ajojmfoacﬁ used in the classical case, and

ﬁna[@ we obtain:

|+ GLA 1 — J7re (1 - erf[x])] = 0.

Where x = —21 and — 4G7po
:;2/{ g~
o

To compare the mocﬁfiecf and calssical oﬁ’.fpersion relation we to
normalize the equation to the classical Jeans [engtﬁ By ﬁxing
the parameter of f(‘R)- gravity, that is

9
| g~

ad=——7=

This _parameterization is correct because the dimension (an inverse of
Squarecf [engtﬁ) allows us to parametrize as in standard case




Jeans criterion for gravitational instability in f(R)-gravity

j—‘ina[@ we write and y[ot this relation

s K4k 2
= ( —+ 1)[1 — Jmxe (1 —erf[x])]=0.

The bold [ine
indicates the }9[01”
0.21 of the mocﬁﬁecﬂ
dispersion
Telation.
The thin [ine
indicates the }9[01”
of the standard.
d'is'persion
ecluau’on




The Jeans mass [imit

in f(R)-gravity

A numerical estimation cf the f(‘R) insmﬁiﬁ’ty [engtﬁ in terms of the standard.

%wwnian one can 68 acﬁievecf

ﬁy solving numerically the above equation with the condition w = o, we obtain that the-
collapse occurs for

k2 = 1.2637k>

However we can estimate also anafyu’caﬁy the [imit for the insmﬁiﬁ’ty

In order to evaluate the Jeans mass [imit in f(R)- gravity, we set W =0

307 ak* — (16mGpya + o?)k? + 47wGp,y = 0.

The additional condition & < o discriminates the class of viable f(R) models: in such a case-
We obtain stable cosmological solution and positively defined massive states



The Jeans mass [imit

in f(R)-gravity

This <o condition selects the Joﬁysica[@ viable models a[fowing to solve the above-
equau’on for real values cf k.

(N

G
In Jaam’cufar, the above numerical solution can be recast as  f? = E (3 +V21)7m—.
. o~

The relation to the Newtonian value of the Jeans insmﬁifﬁy is kz — %(3 + /21 ) k%

“Now, we can déﬁne the new Jeans mass as M, =6 6 M,
(3 + V21)3

Which is }orcyoom’onaf to the standard Newtonian value

We will confront this gpeciﬁc solutions with some observed structures.



One can deal with the star formau’on Joroﬁfem n two ways:

* We can take into account the formation of individual stars and

* We can discuss the formation of the whole star system starting ﬁom
interstellar clouds

To answer these Jm’oﬁfems it is very imjoormnt to stucfy then
interstellar medium (1SM) and its properties

The 1SM }oﬁysica( conditions in the gafaxies cﬁcmge na very wide
Tange, from hot X-ra emitting Jo[asma, to cold molecular gas, so it is very
comjo[i’cat?cf to classify the 1SM By its properties



* Diffuse hydrogen clouds. The most powerful tool to

measure the pro erties qf these clouds is the 21 cm
[ine emission of ‘H1. Tﬁey are cold clouds so the
temperature is in the range 10 + 50 'K, and their
extension 1is up to 50 + 100 @ac ﬁom gafacu’c center

* ‘.ﬁfﬂ:use molecular clouds are genemﬁy seg"'-gmvimting,
’magneu’zedz turbulent ﬂuicfs systems, observed in sub-mm.
The most of the molecular gas is ’H;, and the rest is CO.
Here, the conditions are very similar to the ‘H1 clouds but’
in this case, the cloud can Eey more massive. ’J‘ﬁey have,
Wyicaﬁy, masses in the range 3 + 100 Mo, temperature i
15 + 50 ‘K and Joam’cfe c[ensity in (5 + 50)x 108 m3.




* Giant molecular clouds are very (arge complexes of }oam’cfes (dust and gas),
in which the range of the masses is Wyical%; 105 + 10°Mg but tﬁey are very
cold.

The temperature is ~15 K, and the number of particles is (1 + 3)x 108 m3 .

However, there exist also small molecular clouds with masses M< 104 Mg -

’J'ﬂey are the best sites for star formau’on, cfespiw the mechanism of
formaa’on does not recover the star formation rate that would be 250Mg yr!




H19 regions. ‘Tﬁey are 1S'M regions with temperatures in the range 103 +
104 'K, emitting yrimari[y in the radio and IR regions. At low ﬁequencies,
observations are associated to ﬁee-ﬁ'ee electron transition (tﬁermaﬂ
Céremsstmﬁfung). Their densities range fmm over a million Joam’cfes per cm3
in the u[tmcomjoact H 71 regions to only a few Joam’cfes per cm3 in the
[ar(gest and most extended regions. This imy[ies total masses between 102
and 105 Mg

Y Bok globules are dark clouds of dense-

cosmic dust and gas in which star
formation sometimes takes Joface. Bok
g[oﬁuﬂes are found within H 17 regions,
and tyjoica Y have a mass of about 2 to
50 ‘Mg, contained within a region of’

aﬁout a [lgﬁf yem’.




‘Using very genemf conditions, we want to show the di’ﬁference in the Jeans mass
Value between standard and f(CR)- gravity.

7
, 2\3
Let us take into account M, = kil L<mf ) :

6 Lo G

* in which p,, is the 1SM afensity and O is the Ve[ocity cﬁ’syersion of }oam’cfes due-

to tﬁe tem}oemture

» , i kpT
%856 two qua’nuues are c{eﬁned as Po — Myhp M, OITLC[ g- = L
mgy

[\

Where nyis the number of Joam’c[és measured in m3, is the mean molecular
Meigﬁt, kg is the Boltzmann constant and my,is the _proton mass

Cgly using these relations, we are able to compute the Jeans mass for interstellar
clouds and to }ofot its behavior against the temperature



any astroyﬁysica( system rejoorwc[ in Table is associated to a Joam’cu(ar

(Mj — Q')-region.

Subject

T (K) n(10®m3) u M; (My) M; (M)

Diffuse hydrogen clouds
Diffuse molecular clouds
Giant molecular clouds
Bok globules

50
30
15
10

5.0
50

1.0
100

|
2
0
2

795.13
82.63
206.58
11.24

559.68
58.16
145.41
791

f)ilf%zrences between the two theories for any Seﬁ-gmvimu’ng system

are ¢ &ZCLT



Dashed-line indicates the Newtonian TJeans mass behavior with respect to

the temperature.
Continue-line indicates the same for f(‘.R)-gmvﬁy Jeans mass.
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ng rqferm’ng to the catafog of
molecular clouds in Roman_-
Duval et al., ?lstro}oﬁys. -
723, 492 (2010), we have
calculated the ‘Jeans mass in

~the Newtonian and f(R)

cases.

In all cases we note a_
substantial
difference between the

classical and f‘iR) value.

Subject T K n M; (Mg) M; (My)
(108 m~3)
GRSMC G 053.59 + 00.04 5.97 1.48 18.25 12.85
GRSMC G 049.49 — 00.41 6.48 1.54 21.32 15.00
GRSMC G 018.89 — 00.51 6.61 1.58 22.65 15.94
GRSMC G 030.49 — 00.36  7.05 1.66 22.81 16.06
GRSMC G 035.14 — 00.76  7.11 1.89 28.88 20.33
GRSMC G 034.24 + 00.14  7.15 2.04 29.61 20.84
GRSMC G 019.94 — 00.81 7.17 243 29.80 20.98
GRSMC G 038.94 — 00.46 7.35 2.61 31.27 22.01
GRSMC G 053.14 + 00.04 7.78 2.67 32.06 22.56
GRSMC G 022.44 + 00.34 7.83 2.79 32.78 23.08
GRSMC G 049.39 — 00.26 7.90 2.81 35.64 25.09
GRSMC G 019.39 — 00.01 7.99 2.87 35.84 25.23
GRSMC G 034.74 — 00.66 827 3.04 36.94 26.00
GRSMC G 023.04 — 00.41 828 3.06 38.22 26.90
GRSMC G 018.69 — 00.06 8.30 3.62 40.34 28.40
GRSMC G 023.24 — 00.36 8.57 3.75 41.10 28.93
GRSMC G 019.89 — 00.56 8.64 3.87 41.82 29.44
GRSMC G 022.04 + 00.19 8.69 4.41 47.02 33.10
GRSMC G 018.89 — 00.66 8.79 4.46 47.73 33.60
GRSMC G 023.34 — 00.21 8.87 4.99 48.98 34.48
GRSMC G 034.99 + 00.34 8.90 5.74 50.44 35.50
GRSMC G 029.64 — 00.61  8.90 6.14 55.41 39.00
GRSMC G 018.94 — 00.26 9.16 6.16 55.64 39.16
GRSMC G 024.94 — 00.16 9.17 6.93 56.81 39.99
GRSMC G 025.19 — 00.26 9.72 7.11 58.21 40.97
GRSMC G 019.84 — 00.41 9.97 11.3 58.52 41.19




Here we have analyzed the Jeans instability mechanism, adopted for star
formation, considering the Newtonian approximation of f(R) gravity

The related Boltzmann-Vlasov system leads to modified Poisson equations
depending on the f(R) model

In particular, it is possible to get a new dispersion relation where-
instability criterion results modified

The leading parameter is &, i.e. the second derivative of the ;pecg’ﬁc f(R)
“model. Standard Newtonian Jeans instability is immediately recovered.
Ffor a=0 corresponding to the Hilbert-Einstein Lagrangian of GR.

A new condition for the gravitational instability is derived, showing_
unstable modes with faster growth rates.



Finally we can observe the instaﬁi(i?/ decrease in f(R)- gravity: such.

decrease is related to a larger Jeans length and then to a lower Jeans mass

We have also compared the behavior with the temperature of the Jeans

mass for various types q‘: interstellar molecular clouds

In our model the [imit (in unit of mass) to start the collapse of an.
interstellar cloud is lower than the classical one ad'vanmging the structure-

Fformation.

Real solutions for the Jean mass can be achieved onfy for o < 0 and.

this result is in agreement with cosmotbgy

In particular, the condition <o is essentials to have a well formulated

and well-posed Cauchy problem in f(R)- gravity

Finally, it is worth noticing that the Newtonian value is an upper limit’
for the Jean mass coinciding with f(R.) = R



Discussion and Conclusions




From an observational point of view, reliable constraints can be achieved.
froma caj;e‘ﬁt( cma%/sis of the proto-stellar phase taking into account”

Tmagnetic fields, turbulence and collisions

Addressing stellar systems by this approach could be an extremely important”
to test oﬁsewational}é fR) gravity

“Moreover, the approach developed in this work admits direct generalizations
for other modified gravities, (ike nonlocal gravity, modified Gauss-Bonnet’
“theory, string inspired gravity, etc.

Developing further this approach gives, in general, the possibility to
conﬁoqﬁt’;gﬁﬁsewaﬁﬁz cé?zamics ‘?)f astrqp%ysica( o@e’crt)'s (like s?ars) with
predictions of alternative gravities.



